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SUMMARY 

The flow between a torsionally oscillating and a stationary disk is considered. The solution in the form of a 
power series in e, the ratio of the amplitude of oscillations to the frequency, is obtained on the assumption 
that e << 1. The steady streaming motion is shown to be of the order of magnitude ~. The behaviour of steady 
radial and axial velocities is clarified. The shearing stress on either disk is also calculated. 

The problem of heat transfer in this flow field is considered next. The time-averaged Nusselt numbers are 
calculated up to the third-order approximation in the e-expansion. The effect of the steady streaming flow 
upon the time-averaged heat-transfer rate is discussed. 

1. Introduction 

Many investigations have been carried out for the flow induced by an oscillating body since 

Stokes' work [ 1 ] relating to spherical and cylindrical pendulums. One of  the characteristic fea- 

tures of  the flow around an oscillating body is the persistence of  a steady streaming motion 

caused by the nonlinearity of  the flow field. The problem of  rotational oscillations of  a body of  

revolution has attracted the attention o f  many researchers for developing a method of  measure- 

ment of  viscosity. The flow field around a torsionally oscillating disk in a viscous fluid was first 

analyzed by Rosenblat [2] in 1958. He obtained a solution for the velocity field in the form of  

a power series in e, the ratio of  the amplitude o f  oscillations to the frequency, on the assumption 

that e < <  1 and found the appearance of  the steady streaming motion in the second approxi- 

mation, O(e). However, he was confronted with the difficulty that the steady streaming solution 

obtained did not satisfy the boundary condition at infinity. Later, Riley [3] showed the possibi- 

lity to overcome this difficulty and to obtain a uniformly valid solution by using the method of  

matched asymptotic expansions. 

In the present paper the flow field between a torsionally oscillating and a stationary disk is 

analyzed in the first place, which has never been undertaken so far, though the case of  rotating 

flow between two coaxial disks has been vigorously investigated, for example, formerly by Bat- 

chelor [4] and Stewartson [5], and later by Mellor, Chapple, Stokes [6] and others. 

The parameter e is assumed to be very small in the present analysis. The solution for each 

velocity component is obtained in the form of  a power series in e. The solution describing the 

steady streaming motion appears to the second approximation of  O(e) and satisfies the boundary 

022-0833/81/01/001-13 $00.20/0 Journal of  Engineering Math., Vol. 15 (1981) 1-13 



2 N. DOhara 

conditions exactly without any difficulty, as the domain is bounded in the axial direction in the 

present problem. The unsteady solution to the second-order approximation, though it is out of 
our main aim, is also obtained. It shows an oscillating motion with frequency twice that of the 
primary oscillations. The variations of the non-dimensional radial and axial velocities of the 
steady streaming flow are shown against the axial distance in the figures for a couple of values 
of the non-dimensional distance between the two coaxial disks. The transverse shearing stresses 
on the two coaxial disks are also calculated up to the second-order approximation in the e-ex- 

pansion. 

In the last part of this paper we consider the problem of heat transfer in this flow field. The 
surface temperatures for the oscillating and stationary disks are assumed to be uniform. The 

analysis is developed on the basis of the energy equation and the temperature field is assumed 
to depend only on the time and the axial co-ordinate. The solution is expanded in the form of 

an ascending power series in e and is exactly determined up to the third order. The steady part 
of the solution in the temperature field consists of terms of O(e °) and O(e 2). The first is due to 
pure conduction, and the second to the effect of steady streaming. The time-averaged Nusselt 
numbers on the surfaces of the oscillating and stationary disks are calculated and then the mech- 
anism of laminar heat transfer in the torsionally oscillating flow between the two coaxial disks 
is discussed. 

2. Formulation of the problem 

Consider an incompressible viscous flow between two infinite coaxial disks. The upper disk is 
assumed to be stationary, and the lower disk (placed distance d apart from the upper) has angu- 

lar velocity 6ocosM, or, in complex notation, toe ikt, where co and X are the amplitude and fre- 

quency of the oscillations. The two disks are kept at uniform temperatures T a and To, respec- 
tively. 

Now, we take the z-axis coinciding with the co-axis of the disks and introduce the cylindrical 
polar co-ordinate system (r, ¢, z). Lbt u, v, w denote the radial, transverse, axial components of 

velocity and p and T the pressure and the temperature of the fluid, respectively. Then the ap- 

propriate Navier-Stokes equations of motion are 

au au au v 2 1 Op [ a~u  a ( u )  a2u]~ 
a-S + U -a-;r + W a z r -  p ar+Vj-~y+-~r_ _+az~l' (1) 

--+u--+wat ar ~z + - - = V ~ r 2  ~r]+ a z 2 ]  ' 
(2) 

aw aw aw 1 
at +u ar +w az p 

and the equation of continuity is 

au u aw 
a---r + - r  + ~ = 0 ,  

ap ~a2w 1 aw a2w~ 
az + v l a r  2 + -  + (3) r T az l ' 

(4) 

while the energy equation is 
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- -  = K ~ t ) -  r + (5) a t  +u-~-r +w az r -~r -~r -~z2 l ' 

where v is the kinematic viscosity, ~ the thermal diffusivity and 19 the density of the fluid. The 

derivatives with respect to ~ are omitted owing to the symmetry of the problem. The relevant 

boundary conditions are 

u = 0 ,  v=rcoe iht, w = 0 ,  [ 

at / 
T= To, 

z = O, (6) 

and 

u = 0 ,  v = 0 ,  w = 0 ,  

at / 
T = T  a ,  

z = d .  (7) 

We now proceed to seek a similar solution of the form 

u =rcoF'(r,  rl), v=r~oG(r, rl), w=-2~oX/7-ff]-XF(r, rl), 

1 
P/O = co vP01) + ~ (a + be 2it) co 2 r 2 , 0 (r,)1) = (r-Ta)/ (To-ra) ,  

77=x/ -~2vz  and r = X t ,  

(8) 

where the prime denotes differentiation with respect to r/, and a and b are constants to be de- 

terrnined in the solution procedure. Introduction of (8) into the governing equations (1), (2), (3) 
and (5) yields 

OF' 
- -  + e ( F  '2 - 2 F F " -  G 2 +a +be2iT)= 1 F'"  
O r 2 ' (9) 

3G 1 
--af + 2 e ( F ' G -  FG')= ~ G", (10) 

OF 
P' = - 8 e F F '  + 2 ( 2  - ~ - r -  U" ) ,  (11) 

and 

O0 1 
= 0" (12) Or - 2 eFO' 2Pr ' 

respectively, where e = ~o/X is the ratio of the amplitude of the oscillations to the frequency, 
1 

Pr = v/r the Prandtl number andR = d (X/2v) ~ the non-dimensional distance between the two 
coaxial disks. The boundary conditions (6) and (7) are rewritten as 
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El  ~ O~ 

0 = 1 ,  

and 

F ' = 0 ,  

0 =0,  

respectively. 

G = e i t ,  F =  0, 

G = 0 ,  F = 0 ,  } 

t at 
.1=0, (13) 

at *1=R, (14) 

3. Velocity field 

Now let us assume that a solution of the equations (9) and (10)can be found by expanding F 
and G in ascending powers of e: 

F ( r ,  .1) = Fo(r ,  .1) + eF1 (r, .1) + e 2 F2 (r, .1) + .. . . . . . . . . . . .  (15) 

G(r,  .1) = Go (r, .1) + eG1 (r, ,1) + e 2 G2 (r, .1) + .. . . . . . . . . . . .  (16) 

The boundary conditions (13) and (14) are then transformed into 

G O = e it ,  GN+ 1 = 0 at .1 = 0, (17) F N = F  u = O, 

and 

F N = F N = O ,  G N = O  at *1=R, (18) 

where N = 0, 1,2 . . . . . . .  

Substituting the series (15)and (16) into the equations (9) and (10) and equating coefficients 
of like powers of e, we obtain equations for F o , Go, FI ,  G1 ... .  and so on, successively. From 
the lowest power of e, O(e °), we obtain the equations for F o and Go as 

aFo 1 - Fo", (19) 
ar 2 

aGo 1 
Go'. (20) 

3r - 2 

The solutions satisfying the boundary conditions (17) and (18) are readily obtained as 

F o =0 ,  (21) 
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and 

eir  
{e x ~ ( R - ~ )  -- e - ' J27(R-n)} ,  (22) 

Go = e X / ~  R _ e - x / ~ R  

of which, of course, only the real part, 

:~- {Go}= 
e R 

e 4R -- 2 e  2R cos 2R + 1 

X [(e 2R -- 1) COS R [e (R -71) cos {7" + (R - 17)} - e - ( R - r 1 )  cos t7" - (R - ~)}] 

+(e  2R + l ) s i n R [ e ( R - r ~ ) s i n { r + ( R - r l ) } - e - ( R - n ) s i n { r - ( R - r l ) } ] ]  (23) 

has a physical meaning. 

Next, to the second order of approximation, O(e), we have the equations for F~ and G~, the 
latter of which is of the same form as eq. (20). The solution GI satisfying the boundary condi- 
tions (17) and (18) is 

G 1 = 0 ,  (24) 

On the other hand, the equation for F~ is 

OF; 1 

Or 2 
F ; "  2 be2ir  =G O - a  - (25) 

The solution F~ is assumed to be of the form 

F, (r, r~) = f (~ )  + g(r/) e 2i t  , (26) 

2 in view of the following form of G o, 

G~= 1 a2 2 (t32 +,),2) {e2(R-n) + e - 2 ( R _ n )  _ 2 e 2 ( R _ n ) i }  

+-21 a2~3 2 _ 2 ~ T i _ 7 2 ) { e 2 ( l + i ) ( R _ ~ ) + e _ 2 ( l + i ) ( R _ ~ )  2}e2ir  (27) 

where 

e R 

e 4 R - 2 e  2R c o s 2 R + l  

[3 = (e 2R -- 1) cosR, 

(28) 

(29) 

and 

3' = (e 2R + 1) sinR. (30) 
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Substitution of  the equations (26) and (27) into (25) yields the equations forf(r/)  and g(r/): 

f ' " =  2 a -  a 2 (~2 + 3,2) {e2 (R-n)  + e - 2 ( R - n )  _ 2e2(R-n) i } ,  (31) 

and 

t t l  
g - 4 ig '  = 

2 b - a 2 (~2 _ 2 / 3 7 i -  72 ) {e zO+O(R-n) + e - 2 0 + i ) ( R - n ) _  2}. 

The boundary conditions to be imposed on f(r~) and g(r/) are 

f ( O ) = f ( R ) = O ,  f ' ( O ) = f ' ( R ) = O ,  

and 

(32) 

(33) 

g(O)=g(R)=O, g ' (O)=g'(R)=O. (34) 

These boundary conditions (33) and (34) are also used to determine the unknown constants a 

and b imroduced in (8). 
The solution of  the equation (31) satisfying the boundary conditions (33) is easily obtained 

a s  

f ' ( r / )  = 61 {e 2(R-n) + e  - 2 ( R - r / )  +2e 2(R-n)i +At/2 + g o  72 +~b 1 }, (35) 

and 

81 
f07)  = -  - ~  {3e 2(R-n)  - 3e - z ( g - n ) -  6ie  z ( a - n ) i -  2Ar~ a - 3¢9o r/2 - 6 ~ 1 r / - 6 ~ 2 } ,  

(36) 

where the constants 61,A and a stand for 

81 = - 1 a2 (t32 + 72), (37) 
4 

A = ~ { (1 - R)  e 2R - (1 + R) e - 2 R  _ 2 (R cos 2 R - sin 2 R) - 4R }, (38) 

_ L o t  2 a = (132 + 3, 2 ), (39) 
4 

and the integration constants go ,  ~1 and ~2 are, in real notation, 

1 
~e {qbo}= ~ -  {(,4R - 3 ) e  2R + ( 4 R  + 3 ) e  -2R 

+ 2 (4R cos2R - 3 sin 2R)  + 8R }, (40) 
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".~,, {qbl}=-- (e  2R +e - 2 R  + 2 c o s 2 R ) ,  

and 

1 (e2R _ e - 2 R  . ~  {~2}= -~ + 2 sin2R). 

Next, consideration of the equation (32) and the boundary conditions (34) leads to 

X/~ (1 - i) {'J-'o eX/~( l  +i)r/ -- qdl e-X/~-(1 +i)r~ } g (,7) = 

62 
+ ~ (1 +i) {e 2 ( l + i ) ( R - n )  - e - 2 ( l + i ) ( R - r l )  +2 (1 + i ) C ~ 7 - 2 ( 1  +i)~2},  

where the integration constants ~o o , '#1 and 'I' 2 are expressed as 

-2(I+i)R --4(1 + i )R} {1 e - x / Y ( l + i ) R  } x~ 0 - - -  [ { e  2 ( l + i ) R  -- e 
8 B  

7 

( 4 1 )  

(42) 

(43) 

+X/~- [ { X/~(1 + i )R  + 1 } e - x / ~ ( l + i ) R  1 ] {e 2(1+i)R + e - 2 ( l + i ) R  - 2}] ,  (44) 

XI/1 = 
1 - e - X / ~ ( 1  +i )R 

52 [xIt o {e  x / -~ ( l+ i )R  -- 1 } + ~ i { e  2 ( l + i ) R  +e - 2 ( l + i ) R  - 2} ] 

(45) 
and 

1 {e2( l+i )R  (1 +i)R } Vc2 (1 +i) (qt, - - ~ o ) +  (I --i) - e  -2  
* 2 = 7  7 , 

the constants 62, B, C and b standing for 

52 = a 2 ([32- 2 3 7 i  - 72), 

B = [ { x/~-(1 + i ) R  - 1 } e  x/'~(l+i)R + 1] {e -x / - f ( l+i )R  - 1 } 

- [  { x/~-(1 + i ) R  + I } e  - x / T O + O R  - 1 ] {e x /~O+i)R - 1 } ,  

4 i eX/~( l+i)R e_X/- i ( l+i)  R C = ' ~ -  2 {'I~o + ~ l  } + 2 ,  

and 

(46) 

(47) 

(48) 

(49) 

1 
b = (1 + C ) .  (50)  

Thus, the solution to the second approximation yields the radial and axial components of 
the velocity and the pressure gradient in the field, giving no effects on the transverse velocity. It 
consists of two parts, a steady part and an oscillating part with a frequency twice that of the 
original oscillations. The former expresses the so-called steady streaming motion, to which much 
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attention has been drawn so far. The present solution forf(r/) orf'(r~) satisfies exactly the bound- 

ary conditions on both disks without such a difficulty as in the case of  a single oscillating disk. 

Figures 1-3 show the variations o f f  andf '  against r~ for respective values ofR = 0.1, 1 and 10. 

First, comparison of these figures indicates that the larger the non-dimensional distance R is, 

the more strongly the steady streaming motion occurs. In fact, the magnitude o f f o r f '  for R = 

10 is about 10 s times as large as that forR = 0.1. Secondly, in these figures,f'07 ) vanishes at a 

certain value of 77, say rio, between the two coaxial disks, where the radial velocity vanishes and 

the axial one becomes maximal. This zero plane is about the mid-plane between the two disks 

for small R and moves down towards the oscillating disk with increasing R. The steady streaming 

flows inwards between the stationary disk and this plane, and outwards in the other domain. 

These phenomena are well-understood when the non-dimensional distance R = d (X/2u) -~ 

is considered to have a similar composition to the square root of the Reynolds number. 

The transverse shearing stresses on the oscillating and stationary disks are defined by 

ro = p v  = p v r w ~ / ~ f p  , 
z = O  "q=O 

and (51) 

7 R = P P  z = R = P V r c o  ~X/'~v • 
r l = R  

These are easily evaluated from G o only, since G1 = 0, as 

p r w x / - ~  e R 
T O = - -  

e 4R - 2 e  2R cos2R + 1 

x [ (e ~R - 1) cosR ~e R cos (r  + R + 4 ) + e - R  cos(~ - R + 4 )  

7r R 7t" 
+ ( e  2R + l ) s i n R { e  R c o s ( r + R - - ~ ) + e -  c o s ( r - R - - ~ ) } ] ,  

and 

2 p r oo x/rff-~ e R 

T R = _ 
e 4R -- 2 e  2R cos2R + 1 

7r ( e 2 R  1"( 
x { ( e 2 R - - 1 ) c o s R . c o s ( r + ~ ) +  + 1) sinR • c o s ( r -  -~) }. 

(52) 

(53) 

In the limiting case o fR  ~ 0% ro reduces to 

zr (54) ro = - p r ~  vTX cos(r + ~ ) ,  

which is in complete agreement with the result given by Rosenblat for a single oscillating disk, 

while r R tends to zero. 
Finally, applying the above-obtained ro in (52), we shall now proceed to calculate the fric- 

Journal o f  Engineering Math., Vol. 15 (1981) 1-13 



The flow and heat transfer between two disks 9 

% 
× 

Figure 1. 

41 f' 

7j(, O. 1 
Graphs of  f and f '  against 77 in the 
case of  R = 0.1. 

1 

% 
× 

% 

0 × 

-1 

Figure 2. 

T/o 1 

Graphs o f f a n d f '  against r~ in the 
case o f R  = 1. 

× 

10 
Figure 3. Graphs o f f  and f '  against ~ in the case o f R  = 10. 
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10 N. DOhara 

tional torque experienced by a finite disk of radius D oscillating torsionally in a viscous fluid 
between two infinite parallel plates 2R apart from one another. This is a sort of model for a vis- 
cometer. For the sake of simplicity, the disk is assumed to oscillate in the mid-plane between 

the two plates. When the radius D is sufficiently large compared with R, edge effects on the 
torque may be neglected. The torque on both surfaces of the disk,M, is then evaluated by the 
following integral, 

£o 
M =  - 4 7r r ~ rodr .  (55) 

Inserting (52) in r0 in the above integral and performing the integration, we have 

rrD 4 p e x/~-~-e R 
M= 

e 4R - 2 e  2R cos2R + 1 

rr 
x [(e 2R - 1)cosR { e R c o s ( r + R  + ~ ) + e  -R c o s ( r - R  + ~)}- 

+(e  2R + 1)sinR { e R c o s ( r + R  - - ~ ) + e - R c o s ( r - R  - ~ ) } ] ,  (56) 

which, again, tends to the formula given by Rosenblat when R -~ ~ ,  and must be more adequate 

for a viscometer than the latter. 

4. Temperature field 

The fundamental equation and the boundary conditions for the temperature field are given in 
(12) and in (13) and (14), respectively. We shall now seek for the solution 0 as a power series in 

e ,  

0 (r, n) = ~ e n 0n (r, 7)- (57) 
n 

The solutions 0o and 01 satisfying the boundary conditions (13) and (14) are readily obtained as 

n (58) 0 o = 1 - ~  , 

and 

0, = 0.  (59) 

Next, the equation for 02 becomes 

a02 4 
0~' - 2Pr a~- - R PrF1 " (60) 

Taking the form o f F  1 in (26) into account, we may put 

02 (r, rl) = 020 (rl) + 021 01) e2ir , (61) 
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insertion of which in (60) yields the following equations for 02o and 021, 

,, 4 
020 = Prf, 

and 

11 

(62) 

4 
0~'~ -4 iPr021  = ~ Prg.  (63) 

However, the unsteady part 021 will not be considered here since we are interested only in the 

steady part of the solution. The solution 020 satisfying the relevant boundary conditions is 

found to be 

2 r/s Pr 81 {3 e 2(R-n)  - 3 e - 2 ( R - n )  - 6sin2 (R - 7 / ) -  ~ A 
020 = _ ---~-  

- ¢ o 7 7 4 - 4 ¢ 1 r / 3 - 1 2 ¢ 2 7 / 2  +¢ar~+¢4} ,  (64) 

where the constants ¢o,  ¢1 and ¢2 are already given in (40)-(42) and the new integration con- 

stants ¢3 and ¢4 are determined from the boundary conditions (13) and (14) as 

and 

3 (e2g - 2 R ) _  6 ¢ 3 = ~  - e  ~ s i n 2 R + 2 A R 4 + ¢ o R 3 + 4 ¢ 1 R 2 + 1 2 ¢ 2  R 
5 

(65) 

¢ 4 = 3 ( e  - 2 R - e 2 g  + 2 s i n 2 R ) .  (66) 

The stationary part of the temperature gradient on the surface of the oscillating disk is calculated 

a s  

1 Pr (e 2R + - 2 cos2R - ~ ¢3) + . . . .  (67) 0 ' ( 0 ) = -  ~ +-'R-- 6, e 2 e -2R 1 

and that on the surface of the stationary one as 

1 Pr e2 A R 4  2 1 0'(R) = -  ~ +-~--61 ('~- + 5 ¢ o R a + 2 ¢ , R 2 + 4 ¢ 2 R - ~ ¢ 3 ) +  . . . .  (68) 

The Nusselt number Nu is composed of the original dimensional quantities, as 

aT 
d (-fro z = o  o,.  

Nu = - To - T a ' (69) 

where the subscript z = 0 or d should be applied when Nu is concerned with the oscillating disk 
or the stationary one, respectively. If we take the time-averaged Nusselt number, we have only 
to substitute the stationary part of the temperature gradient (67) or (68) into the above expres- 
sion, obtaining 
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12 N. DOhara 

_ ( d O )  
Nu = - R  d~ n=OorR 

:t: 1 fo  =o, 
- P r 8 l e 2 (  A, R 4 +2qboR3~ +2q~1 R2 + 4 ~ 2 R - ~ q ~ a )  for r / : R .  (71) 

As is seen in the process of  solution of the temperature field, the effect of  the oscillating 

disk appears first to the order of  e 2 , not to the order of e, through the steady streaming and the 

induced oscillating flow of a frequency twice the original one. 

Figure 4 shows the variations of  Nu at 7/= 0 and R plotted against the parameter e for the 

respective values o fR = 1, I0, 50 and 100, the Prandtl number being taken as unity for simplic- 

ity's sake. For R = 1, little deviations from unity can be seen, since the steady streaming flow is 
too small, as was seen in Fig. 2, to contribute to an increase of heat transfer, and the heat re- 

moved from the hot oscillating disk is all transferred to the cold stationary disk only by pure 

conduction. 

1.5 

• for  the hot o s c i l l a t i n g  disk  

f l t = l N O p  : for  the cold s ta t ionary  disk  

~ . . i , 1  , i I ~ .  , , , ( I  J , , /  , , l 
~ ' ~ .  ~ ' - - L  " ~ ' , ~ T -  . . . . . .  ..z . . . . .  0.15 

",,. " - \  / 

m 
Figure 4. Graphs of Nu at the surfaces of the oscillating and stationary disks against e for respective values 
ofR = 1, 10, 50 and 100 in the case ofPr = 1. 

However, the contribution of the steady streaming becomes appreciable with increase of e 

for R = 10 and considerable even at very small e for R >__ 50. It should be noted that the larger 

the values of  e and R are, the more heat is removed from the hot oscillating disk and the less 

heat is received by the cold stationary disk. The difference between these heat amounts is brought 

away in the radial direction by the steady streaming flow. 
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